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Background

Malus prunifolia ‘Fupingqiuzi’ is a unique germplasm with strong tolerance to stress environments and even
affects tolerance of scion after grafted. It is widely used as an apple rootstock in China. Despite its importance for
the improvement of cultivated apple, its genetic origin and evolutionary history are largely unknown, as are the
mechanisms that underlie its acquisition and transmission of stress tolerance.
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Fig. 1 Genome features of M. prunifolia ‘Fupinggqiuzi’. Circular representation domestica after grafting onto M. prunifolia
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Fig. 2 Genomic evolution of M. prunifolia. (A) Construction of a phylogenetic
tree and estimation of divergence times (Mya, black numbers) of M. prunifolia
and six other plant species. Expansions (red numbers) and contractions (grey
numbers) of gene families among six plant species were shown. The number at
the root (26,205) denotes the total number of gene families predicted in the
most recent common ancestor (MRCA). (B) Synteny blocks of M. prunifolia, M.
x domestica , and Vitis vinifera. Blue lines represent one-to-two synteny blocks
between V. vinifera and M. prunifolia, and green lines indicate one-to-one

Fig. 5 Grafting-mediated DNA methylation and gene transcription in the
M. domestica ‘Golden Delicious’ scion. (A) Relative proportions of mCs
(methylated cytosines) in three sequence contexts (CG, CHG, and CHH) in
homo-grafting and hetero-grafting. (B) Global distribution of DNA methylation
levels among gene coding regions and their 2-kb upstream and downstream
regions. (C) Percentage of methylation levels among TE regions and its 2-kb
upstream and downstream sequences. (D) Gene ontology (GO) enrichment
analysis of differentially methylated genes (DMGs) in hetero-grafted ‘Golden

synteny blocks between M. prunifolia and M. x domestica. Delicious’ compared to homo-grafted ‘Golden Delicious’ . (E) Heatmap
showing the expression levels of selected genes related to flowering, hormone

. . . e e biosynthesis, and stress response in homo-grafting and hetero-grafting.
lll. Genetic origin of M. prunifolia

VI. Grafting-mediated DNA methylome and transcriptome
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Fig. 3 Genetic structure analysis of M. prunifolia. (A) Neighbor-joining (NJ)
phylogenetic tree constructed using SNPs at four-fold degenerate sites (4D
SNPs). Each accession group, including M. prunifolia accessions (PRU),
Chinese wild accessions (CWD), Chinese landrace accessions (CLR), and M.
sieversii accessions (SIE) is color coded. (B) Principal component analysis
(PCA) of all 113 apple accessions. (C) Admixture analysis of all apple
accessions. The length of each colored segment represents the proportion of the
individual genome inferred from ancestral populations (K=4). (D) Summary of
the genomic contributions of the two major ancestors of ‘Fupingqiuzi’.

Fig. 6 Landscape of grafting-mediated changes in scion and rootstock
under drought conditions. (A) Relative proportions of three mCs (methylated
cytosines) sequence contexts in homo-grafted and hetero-grafted ‘Golden
Delicious’ under drought conditions. (B) Heatmap of selected differentially
expressed genes (DEGs) related to molecular chaperones, lipoxygenase,
biosynthesis of cuticular wax and ABA in homo-grafted and hetero-grafted
‘Golden Delicious’ under drought conditions. (C) Volcano diagram showing
DEGs (adjust P value<0.05; |log,(Fold Change)|>2) in hetero-grafted M.
prunifolia compared to homo-grafted M. prunifolia and their genetic origins from
M. sieversii and M. baccata under drought conditions. (D) Gene ontology (GO)

. . . . terms of enriched DEGs in hetero-grafted M. prunifolia in response to drought
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Conclusion

In this study, we assembled a 712-Mb high-quality, chromosome-scale M. prunifolia genome and analyze sequences of 113 Malus
accessions. We clarify the two major gene flows of M. prunifolia. M. sieverii and M. baccata. In addition, scions grafted onto M. prunifolia show
increased tolerance to drought, cold, heat stress, and pathogen attack. Differentially methylated regions (DMRs) and differentially expressed
genes (DEGs) under control and drought stress conditions are enriched in stress response in the scion. Notably, 1,217 and 1,147
drought-responsive DEGs are contributed from M. sieverii and M. baccata in response to drought stress, respectively. Some of these DEGs are
related to biosynthesis of ABA and cuticular wax, root growth, oxidoreductase, and molecular chaperone. Moreover, mobile mMRNAs that move
from rootstock to scion under control and drought stress encode key regulatory genes associated with stress tolerance. Together, these findings
provide insights into genetic origin of Chinese originated crabapples and lay the foundation for better understanding the grafting-mediated stress
tolerance.




