Magnesium Hydride-Mediated Sustainable Hydrogen Supply Prolongs the Vase Life of Cut Carnation Flowers via Hydrogen Sulfide

Longna Li¹, Yuhao Liu¹, Shu Wang¹, Jianxin Zou², Wenjiang Ding², Wenbiao Shen^{1,2*}

1 College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China, 2 Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China

MA NAMING 1902

INTRODUCTION

Floral industry rapidly developed in China. The development of environmentfriendly preservatives is a challenge for researchers.

Hydrogen gas (H₂), a carbon-free energy carrier, has a wide influence in our lives from industry to medicine and agriculture since its biological effects. It has been discovered that H₂ can prolong the vase life of cut rose, carnation, African daisy, chrysanthemum and lisianthus. A major method of H₂ delivery is hydrogen-rich water (HRW). However, the practical application of HRW is limited due to the low solubility and short residence time of H₂ in water.

RESULTS

3. H₂S is Involved in MgH₂-CBS-Prolonged Vase Life of Cut Carnation Flowers

Correlating with changes in the phenotypes of vase life, relative fresh weight and flower diameter (Fig. 4), and endogenous H₂S production (Figure 3), the results indicated that endogenous H_2S might participate in MgH₂-CBSprolonged the vase life of cut carnation flowers.

Magnesium hydride (MgH₂), a solid hydrogen storage material, may provide ways to improve the issues about production

and storage of H₂ sinece its high hydrogenstorage capacity (7.6 wt%), abundant resources, and low cost.

$$MgH_2 + 2H_2O \rightarrow Mg(OH)_2 + 2H_2$$

- **Disdvantages of MgH₂: 1) the extremely slow reaction kinetics; 2) Mg(OH)**₂ rapidly occured to inhibite further reaction.
- **>** Some organic acids (such as citrate acid) were found as good buffer agents to effectively accelerate the reaction.

In this study, we firstly aim to find an optimized condition for using MgH₂ in flower vase experiment. Then we tried to identify the effect and mechanism of MgH₂ on prolonging vase life of cut carnation flower.

MATERIALS AND METHODS

> Vase experiments

Distilled water (control), 0.1 M citrate buffer solution (CBS, pH 3.4) containing 0.01, 0.1, and 1 g L⁻¹ MgH₂ (MgH₂-CBS), 10% HRW (obtained by water electrolysis)

> Pharmacological experiments

Distilled water (control), 0.1 g L⁻¹ MgH₂-CBS, 600 µM NaHS (a H₂S releasing compound), or 10 mM HT (a specific H₂S-scavenger), alone and in combination.

Fig. 3 MgH₂-CBS triggers H₂S accumulation. (A) The cut flower stems were incubated for 3 d. Afterwards, the epidermis of petals were loaded with 20 µM WSP5 (a H2S fluorescent probe) and detected by laser scanning confocal microscopy (Scale bar = 200 μ m). (B) The relative fluorescence was also presented as values relative to control (0 d).

Fig. 4 MgH₂-CBS-prolonged vase life of cut carnation flowers is sensitive to the scavenger of H₂S.

4. MgH₂-CBS maintains redox homeostasis via H₂S

MgH₂-CBS-reestablished redox homeostasis was closely associated with the alteration in endogenous H₂S.

 \mathbf{B}

RESULTS

1. Characterization of MgH₂

As shown in Fig. 1, MgH₂ particles are spherical with the diameter of 0.5-25 μm (mean diameter = 15 μm). The amount of H₂ generated from complete hydrolysis of MgH₂ was about 1800 ml g⁻¹ (0.18% (v/v); less than 4% of the lower flammability limit of H₂). Thus, it is generally safe by using MgH₂ as a vase regent.

Fig. 1 Characterization of MgH₂ used in this work. (A) Scanning electron microscopy (SEM) micrographs of MgH₂ (Scale bar = 20) μm). (B) X-ray diffraction (XRD) pattern of MgH₂ powers. (C) Thermogravimetric (TG) and differential scanning calorimetry (DSC) curves of MgH₂. (D) H₂ generated from hydrolysis of MgH₂.

2. MgH₂-CBS Prolongs the Vase Life of Cut Carnation Flowers

MgH₂ hydrolysis, which was intensified when dissolved in CBS, and can remain higher amounts of dissolved H₂ over a relatively longer period of time than the electrolytic HRW.

0.1 g L⁻¹ MgH₂-CBS significantly prolonged the vase life of carnation cut flowers, compared to different doses of MgH₂, various CBS, or 10% HRW alone.

Fig. 5 MgH₂-CBS maintains redox homeostasis via H_2S . (A) The petals were stained with 3,3-diaminobenzidine (DAB), then photographed under a light microscope (Scale bar = 1 mm). (B) H_2O_2 contents were also determined by the spectrophotography.

5. The role of H₂S in MgH₂-CBS-modulated SAGs during postharvest senescence

DcbGal and **DcGST** might be the target genes responsible for MgH₂-CBStriggered H₂S-prolonged vase life of cut flowers.

Fig. 6 Changes in the transcripts of senescence-associated genes. After treatments for the indicated time points or 5 d, the transcript levels of *DcbGal* (A, C) and DcGST1 (B, D) in petals were analyzed by qPCR.

\rightarrow The function of MgH₂-CBS is H₂-dependent.

Fig. 2 Changes in vase life, relative fresh weight (RFW) and flower diameter of cut carnations and dissolved H₂ in solution subjected to MgH₂, citrate buffer solution (CBS), MgH₂-CBS, heated MgH₂-CBS, and hydrogen-rich water (HRW).

CONCLUSIONS

- 1. MgH₂-mediated H₂ sustainable supply showed the positive effects on the postharvest preservation of cut flowers.
- 2. Compared to HRW, the utilization efficiency of MgH₂ was improved by buffering with CBS.
- 3. MgH₂ may have a great potential for application in horticulture.
- 4. H₂S played a vital role of in MgH₂-CBS-prolonged the vase life of cut flowers by modulating expression of senescence-associated genes.

ACKNOWLEDGEMENTS

The work was financially support by the Funding from Center of Hydrogen Science, Shanghai Jiao Tong University, China, and Foshan Agriculture Science and Technology Project (Foshan City Budget No. 140, 2019.).

REFERENCES

- 1. Corpas, F. J. (2019). Hydrogen sulfide: a new warrior against abiotic stress.
- 2. Chao, C. (2018). "Clinical applications of magnesium hydride," in Magnesium Alloys Selected Issue. (IntechOpen), 115–128.
- 3. Su, J., Nie, Y., Zhao, G., et al. (2019). Endogenous hydrogen gas delays petal senescence and extends the vase life of lisianthus cut flowers. Postharvest Biol. Tec. 147, 148–155.
- 4. Shen, W., and Sun, X. (2019). Hydrogen biology: it is just beginning. Chin. J. Biochem. Mol. Biol. 35, 1037-1050.